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The standard model of magnetization transfer consists of six The general solution of the standard model extends its
coupled, first-order differential equations which describe a lossless applicability to any experimental procedure. In addition to
exchange of magnetization between two sites. The system of differ- the cases considered in (12, 13) it allows one to investigate,
ential equations is solved semi-analytically in full generality. The e.g., the case of continuous off-resonance irradiation ap-
solution allows one to model any experiment generating magneti- proaching resonance, or off-resonance effects arising in
zation transfer. It is especially useful in investigation spin systems

pulsed MT experiments. The extended applicability is partic-subjected to pulsed magnetization transfer experiments. q 1998
ularly useful for designing MT pulse sequences and for ob-

Academic Press
serving MT of off-resonance spins by MR spectroscopy (see,Key Words: magnetization transfer model.
e.g., (16)) .

INTRODUCTION THEORY

Based on pioneering work (1–3) , a macroscopic spin The standard MT model describes the exchange of magne-
model which accounts for a two-site exchange of magnetiza- tization between two pools A and B by assuming the validity
tion has been proposed (4–8) . We refer to this model as the of the Bloch equations for each pool. During the presence
‘‘standard’’ model of magnetization transfer (MT). Among of an RF field Bt 1 of amplitude v1 and frequency offset
other applications the model has been shown to account DvA ,B Å v 0 vA ,B

0 , the magnetization in the rotating frame
for systems containing water molecules bound to protein u*A ,B Å MA ,B

x ,rot , u*A ,B\Bt *1 , £ *A ,B Å MA ,B
y ,rot , MA ,B

z Å MA ,B
z ,rot , is

structures (see, e.g., (4)) . The spin ensembles of both pools given by
of the standard model obey the Bloch equations. Thus, the
spin system is described by six coupled, first-order differen-
tial equations (DEqs). We present a general solution ob- du*A ,B

dt
Å 0 1

TA ,B
2

u *A ,B 0 DvA ,B
£ *A ,B

tained by Laplace transformation. This technique has been
used before to solve the plain Bloch equations (9–11) and d£ *A ,B

dt
Å 0 1

TA ,B
2

£ *A ,B / DvA ,Bu *A ,B 0 v1MA ,B
zspecial cases of the problem considered here (12, 13) . The

solution is ‘‘semi-analytic’’ in the sense that it is presented
analytically apart from roots of a sixth-order polynomial dMA

z

dt
Å 0S 1

TA
1

/ rXD(MA
z 0 MA

0 )which are computed numerically.
A continuous-wave MT experiment can be modeled ap-

proximately by only considering the steady state solution of / rX

f
(MB

z 0 MB
0 ) / v1£ *A

the standard model (see, e.g., (4)) . However, the including
of transient effects avoids a systematic error (12) . The tran-
sient solution of (12) is based on the assumption that MR- dMB

z

dt
Å 0S 1

TB
1

/ rX

f D(MB
z 0 MB

0 )
visible spins remain unaffected by continuous off-resonance
RF irradiation. Hence it utilizes only four DEqs of the stan- / rX ( MA

z 0 MA
0 ) / v1£ *B , [1]

dard model. The transient solution is essential for modeling
pulsed MT experiments, where RF irradiation periods are

where rX denotes the exchange rate, and f the ratio of equilib-comparable to spin–spin relaxation time constants of the
rium magnetizations of both pools, i.e., f Å MB

0 /MA
0 .MR-invisible spin pool (14, 15) . Since RF irradiation close

Using dimensionless quantitiesto resonance is used, both pools are affected. Again, the case
of precise on-resonant RF irradiation is modeled by four
DEqs (13) . t Å v1t , uA ,B Å u *A ,B /MA ,B

0 , £A ,B Å £ *A ,B /MA ,B
0 ,
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97STANDARD MAGNETIZATION TRANSFER MODEL

The solution
wA ,B Å (MA ,B

0 0 MA ,B
z ) /2MA ,B

0 ,

dA ,B Å DvA ,B /v1 , aA ,B Å 1/(v1T
A ,B
1 ) , xI Å 1

det B
Badjx0 [5]

bA ,B Å 1/(v1T
A ,B
2 ) , aX Å rX/v1 , aY Å rX/ ( fv1) , [2]

requires computation of the adjugate and the determinant of
Eqs. [1] read B . The term Badjx0 is conveniently presented as g Å pBadjx0 ,

where g can be written as
duA ,B

dt
/ bA ,BuA ,B / dA ,B£

A ,B Å 0

d£A ,B

dt
/ bA ,B£

A ,B 0 dA ,BuA ,B / (1 0 2wA ,B) Å 0
g Å

uA
0 g15 ??? g10

uB
0 g25 ??? g20

£
A
0 g35 ??? g30

£
B
0 g45 ??? g40

wA
0 g55 ??? g50

wB
0 g65 ??? g60

p 6

p 5

p 4

p 3

p 2

p
1

[6]

dwA

dt
/ (aA / aX )wA 0 aX wB / £

A

2
Å 0

dwB

dt
/ (aB / aY )wB 0 aY wA / £

B

2
Å 0. [3] with

g15Å (g1/ bA/ 2bB)uA
0 0 dA£

A
0The definition of the dimensionless quantities requires a sep-

arate consideration of the case of no RF irradiation, i.e., v1 g14Å [g3/ 2(g1/ bA)bB/ g1bA/ 2/ g2]uA
0

Å 0. In this case the six coupled DEqs [1] are reduced to 0 (g1/ 2bB)dA£
A
0 0 2dAwA

0 / dAthree pairwise coupled DEqs. The solution for the transversal
magnetization components needs to take a possible differ- g13Å [(g1/ bA)g3/ (2g1bA/ 2g2/ 3)bB

ence of the resonance frequencies of the A and B nuclei into
/ (g2/ 1)bA/ g1]uA

0account; the calculation is straightforward. The solution for
the longitudinal components is given in (13) . With the La- 0 (g3/ 2g1bB/ g2/ 1)dA£

A
0

place transformation of a function u( t) denoted by ũ(p) Å
0 2(2bB/ aB/ aY )dAwA

0 0 2dAaX wB
0*`

0
u( t)e0ptdt , the Laplace transform of Eqs. [3] reads

/ (g1/ 2bB)dA

(p / bA ,B)uI A ,B / dA ,B£I
A ,B Å uA ,B

0 g12Å [(g1bA/ g2/ 1)g3/ 2(g2bA/ 0.5bA

/ aB/ aY )bB/ (aX/ aA)(bA/ bB)/ 1]uA
0(p / bA ,B)£I A ,B 0 dA ,BuI A ,B 0 2wI A ,B Å £

A ,B
0 0 1

p 0 [g1g3/ (2g2/ 1)bB/ aX/ aA]dA£
A
0

/ dAaX £
B
0 0 [2g3/ 4(aY/ aB)bB/ 2]dAwA

0(p / aA / aX )wI A 0 aX wI B / £I
A

2
Å wA

0

0 4dAbBaX wB
0 / (g3/ 2g1bB/ g2/ 1)dA

(p / aB / aY )wI B 0 aY wI A / £I
B

2
Å wB

0 . [4] g11Å [(g2bA/ aY/ aB)g3/ (aX/ aA)bAbB/ bB]uA
0

/ dAdBaX uB
0 0 [g2g3/ (aX/ aA)bB]dA£

A
0

Equations [4] may be written in matrix form, Bx̃ Å x0 , / dAbBaX £
B
0 0 [2(aY/ aB)g3/ 2bB]dAwA

0where x̃ Å [ ũ A , ũ B , £I A , £I B , w̃A , w̃B]T , x0 Å [uA
0 , uB

0 , £A
0 0

(1/p) , £B
0 0 (1/p) , wA

0 , wB
0 ]T , and 0 2g3dAaX wB

0 / [g1g3/ (2g2/ 1)bB/ aA]dA

B Å

p / bA 0 dA 0 0 0
0 p / bB 0 dB 0 0
0dA 0 p / bA 0 02 0

0 0dB 0 p / bB 0 02
0 0 1/2 0 p / aA / aX 0aX

0 0 0 1/2 0aY p / aB / aY

.
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g10Å (g2g3/ bBaA)dA / (g3 / g4 / 4bAbB)aX wB
0

/ 0.5(bA / 2bB / aB / aX / aY )g35Å dAuA
0 / (g1/ bA/ 2bB)£A

0 / 2wA
0 0 1

g34Å (g1/ 2bB)dAuA
0 g52 Å [00.5g3 0 (aB / aY )bB 0 0.5]dAuA

0 0 bAdBaX uB
0

/ [g3/ (g1/ 2bB)bA/ 2g1bB/ g2/ 1]£A
0 0 [0.5(bA / aB / aY )g3 / (aB / aY )bAbB

/ 2(bA/ 2bB/ aB/ aY )wA
0 / 0.5(bA / bB)]£A

0 0 (0.5g4 / bAbB)aX £
B
0

/ 2aX wB
0 0 bA0 2bB0 g1 / [(1 / g3)g4 / 2(aB / aY )(bBg4 / bAg3)

g33Å (g3/ 2g1bB/ g2/ 1)dAuA
0 / 2bAbB]wA

0 / 2(bAg3 / bBg4)aX wB
0

/ [(g1/ bA)g3/ (2g1bA/ 2g2/ 1)bB / 0.5g3 / (aB / 0.5aX / aY )bB

/ (g2/ 1)bA/ aA/ aX ]£A
0 / (0.5aB / aX / 0.5aY )bA / bAbB / 0.5

0 aX £
B
0 / [2g3/ 4(bA/ aB/ aY )bB g51Å00.5[(aB/ aY )g3/ bB](dAuA

0 / bA£
A
0 )

/ 2(aB/ aY )bA/ 2]wA
0 0 0.5g4aX (dBuB

0 / bB£
B
0 )

/ 2(bA/ 2bB)aX wB
0 0 g30 2(g1/ bA)bB / [(aB/ aY )g3/ bB]g4w

A
0 / g3g4aX wB

0

0 g1bA0 g20 1 / 0.5(bA/ aB/ aY )g3/ 0.5aXg4

g32Å [g1g3/ 2g2bB/ bB/ aX/ aA]dAuA
0 / (aB/ aX/ aY )bAbB/ 0.5(bA/ bB)

0 dBaX uB
0 / [(g1bA/ g2)g3/ (2g2/ 1)bAbB g50Å 0.5[(aB/ aY )bAg3/ bBaXg4/ bAbB]

/ (aX/ aA)(bA/ bB)]£A
0 0 (bA/ bB)aX £

B
0 and

/ [2(bA/ aB/ aY )g3/ 4(aB/ aY )bBbA

g1 Å aA / aB / aX / aY ,/ 2(bA/ bB)]wA
0 / 2(g3/ 2bAbB)aX wB

0

g2 Å aAaB / aXaB / aYaA ,0 (g1/ bA)g30 (2g1bB/ g2/ 1)bA

g3 Å d 2
B / b 2

B , g4 Å d 2
A / b 2

A .0 (2g2/ 1)bB0 aA

g31Å [g2g3/ (aA/ aX )bB]dAuA
0 0 dBbAaX uB

0 The remaining coefficients g2ij , i √ {1, 2, 3}, j √ {1,
. . . , 5}, are obtained from g2i01j by swapping the indices A/ [g2bAg3/ (aA/ aX )bAbB]£A

0 and B , and X and Y of a, b, d, u0 , £0 , and w0 . Note that this
index permutation affects g3 and g4 as well. Further,0 bAbBaX £

B
0 / [2(aB/ aY )bAg3/ 2bAbB]wA

0

/ 2aXbAg3w
B
0 0 (g1bA/ g2)g3 det B Å D(p)

0 (2g2/ 1)bAbB0 (bB/ bA)aA Å p 6 / c5p 5 / c4p 4 / c3p 3 / c2p 2 / c1p / c0

g30Å0g2bAg30 bAbBaA [7]
g55Å00.5£A

0 / (2bA/ 2bB/ aB/ aY )wA
0 / aX wB

0

with
g54Å00.5dAuA

0 0 0.5(bA/ 2bB/ aB/ aY )£A
0

c5 Å 2(bA / bB) / g10 0.5aX £
B
0 / [g3/ g4/ 2(2bA/ aB/ aY )bB

c4 Å g2 / g3 / g4 / 2g1(bA / bB) / 4bAbB / 2/ 2(aB/ aY )bA/ 1]wA
0

c3 Å g1(g3 / g4 / 1) / [4g1bA / 2(g2 / g4) / 3]bB/ 2(bA/ bB)aX wB
0 / 0.5

/ [2(g2 / g3) / 3]bAg53Å00.5(2bB/ aB/ aY )dAuA
0 0 0.5dBaX uB

0

c2 Å g3g4 / (g2 / 1)(g3 / g4 / 4bAbB)0 [0.5g3/ (aB/ aY )(0.5bA/ bB)

/ 2g1(g3bA / g4bB)/ bAbB/ 0.5]£A
0 0 (bA/ 0.5bB)aX £

B
0

/ [(2bB/ aB/ aY )g4/ (2bA/ aB/ aY )g3 / [aA / aX / 2(aB / aY )]bB

/ [aB / aY / 2(aA / aX )]bA / 1/ 4(aB/ aY )bAbB/ 2bA/ bB]wA
0
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c1 Å g1g3g4 / (aA / aX )g4 / (aB / aY )g3 where h *i Å hi / i is real. The steady state solution k7 is
obtained by/ (1 / 2g2)(g3bA / g4bB) / 2g1bAbB / bA / bB

c0 Å g2g3g4 / (aA / aX )g4bB
k7 Å lim

pr0
pxI (p) Å g(0)

D(0)
. [12]

/ (aB / aY )g3bA / bAbB .

To obtain the remaining coefficients k1 , . . . , k6 , one needsNote that if v1 ú 0, then c0 , . . . , c5 ú 0, in which case all
to consider the cases of a pair of k’s originating from areal roots of D(p) are negative, whereas if v1 õ 0, then c0 ,
conjugate pair of complex roots or a pair of real roots sepa-c2 , c4 ú 0, c1 , c3 , c5 õ 0, in which case all real roots are
rately. Let k2i01 , k2i correspond to a complex root repre-positive. Since the real parts of roots are the damping factors
sented by ji , hi √ R. We then consider this limiting caseof the time domain solution, physical reality requires that
of Eq. [9] ,this relation also holds for the real parts of complex roots.

Note, however, that neither only the signs of the coefficients
lim

pr0ji/ihi

xI (p)[(p/ ji )2/ h 2
i ]Å ik2i01hi / k2i [13]nor a physical principle determines the number of real roots

(17) . We assume that the roots of D(p) are obtained by a
numerical procedure and exclude for the moment the exis- g(0ji / ihi )

(0ji / ihi )DR(0ji / ihi )
Å ik2i01hi / k2i , [14]tence of multiple roots. Then D(p) can be factorized as

where DR(p) Å D(p) / [(p / ji )2 / h 2
i ] . Each componentD(p) Å ∏

3

iÅ1

[(p / ji )2 / h 2
i ] , [8]

of the left-hand side of Eq. [14] is of the form

regardless of whether its roots are real or complex. In case of
a conjugate pair of complex roots zi , z*i , j, and h represent zi

fj( p) Å
gj6p 6 / gj5p 5 / gj4p 4

/ gj3p 3 / gj2p 2 / gj1p / gj0

p[(p / j2) 2 / h 2
2][(p / j3) 2 / h 2

3]
, [15]Å 0ji / ihi , i Å

√
01; in case of a pair of real roots x2i01 and

x2i , j and h represent ji Å 0(x2i01 / x2i )/2 and hi Å i(x2i01

0 x2i )/2, where the sign of hi can be chosen arbitrarily. This assuming ji Å j1 , hi Å h1 without loss of generality. The
notation avoids cumbersome bookkeeping of the four possible real and imaginary parts of Eq. [15] are given by
combinations of pairs of real and complex roots, which indeed
are found to occur. Given the factorization of Eq. [8], the

f re
j (0j1 / ih1) Å 1

h3

[(hj4h1 0 hj5j1)(h1h *1 0 h2h *2 )solution x̃ Å g/(pD(p)) is expanded in partial fractions by

0 (hj5h1 / hj4j1)(h *1 h2 / h1h *2 )]xI (p) Å ∑
3

iÅ1

k2i01(p / ji ) / k2i

(p / ji )2 / h 2
i

/ k7

p
. [9]

f im
j (0j1 / ih1) Å 1

h3

[0(hj5h1 / hj4j1)(h1h *1 0 h2h *2 )
Inverse Laplace transformation of x̃ yields the time domain
solution: 0 (hj4h1 0 hj5j1)(h *1 h2 / h1h *2 )] ,

[16]x(t)

whereÅ ∑
3

iÅ1
Fk2i01cos(hit) / k2i

hi

sin(hit)Ge0jit / k7 .

h1 Å (j1 0 j3) 2 0 h 2
1 / h 2

3 ,[10]

h *1 Å (j1 0 j2) 2 0 h 2
1 / h 2

2
This is a real function. Terms containing an imaginary hi

can be written as h2 Å 2h1(j3 0 j1) , h *2 Å 2h1(j2 0 j1)

h3 Å (j 2
1 / h 2

1)(h * 2
1 / h * 2

2 )(h 2
1 / h 2

2)Fk2i01cos(hit) / k2i

hi

sin(hit)Ge0jit

hj4 Å gj6(06j 5
1h1 / 20j 3

1h
3
1 0 6j1h

5
1)

/ gj5(5j 4
1h1 0 10j 2

1h
3
1 / h 5

1)
Å k2i01h *i 0 k2i

2h *i
e0 (ji/h

=
i)t / k2i01h *i / k2i

2h *i
e0 (ji0h =i)t ,

/ gj4(04j 3
1h1 / 4j1h

3
1) / gj3(3j 2

1h1 0 h 3
1)

0 2gj2j1h1 / gj1h1[11]
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resonant case. Compared to a solution by projection opera-hj5 Å gj6(j 6
1 0 15j 4

1h
2
1 / 15j 2

1h
4
1 0 h 6

1)
tors, this solution avoids the asymptotic approximation (Eq./ gj5(0j 5

1 / 10j 3
1h

2
1 0 5j1h

4
1) [10] of (18)) and provides the time development of all

magnetization components, a useful feature particularly with/ gj4(j 4
1 0 6j 2

1h
2
1 / h 4

1) / gj3(0j 3
1 / 3j1h

2
1)

respect to pulse design./ gj2(j 2
1 0 h 2

1) 0 gj1j1 / gj0 . The solution was thoroughly validated by comparing its
behavior with solutions of the plain Bloch equations (10)

Then, and of the specialized binary systems of (12, 13) for various
pulse sequences. Equations [6] , [7] , and [16] were com-
puted by the symbolic calculation program Maple V R3k1 Å

1
h1

f im(0j1 / ih1) , k2 Å f re (0j1 / ih1) . [17]
(Waterloo Maple, Inc., Waterloo, Canada), manually rewrit-
ten in a compact form and checked against the original so-

If k2i01 , k2i correspond to a pair of real roots x2i01 , x2i repre- lution.
sented by ji , hi and h *i Å hi / i , we consider The implementation uses Laguerre’s method as described

in (19) for computing the roots of D(p) , Eq. [7] . Multiple
lim

pr0ji/h
=
i

xI (p)[(p / ji )2 / h 2
i ] Å f (0ji / h *i ) roots have been found to occur if TA

1 Å TB
1 , TA

2 Å TB
2 , and

dA Å dB Å 0. However, since an infinitesimal variation of a
coefficient is sufficient to resolve the degeneracy (20) , mul-Å k2i01h *i / k2i
tiple roots pose no problem if the coefficients represent phys-

and ical parameters of finite precision. Variation of one parame-
ter such as TA

2 by less than a factor (1 / 1004) resolves the
lim

pr0ji0h
=
i

xI (p)[(p / ji )2 / h 2
i ] Å f (0ji 0 h *i ) degeneracy, a fact which proves the robustness of the algo-

rithm.
Compared to numerical integration methods, the main ad-Å 0k2i01h *i / k2i . [18]

vantage of the algorithm is its black box capability. Pulse
sequences consisting of pulses of some microseconds or sec-Hence,
onds duration are readily realized; spin system parameters
may vary over several orders of magnitudes. The algebraic

k2i01 Å
1

2h *i
[ f (0ji / h *i ) 0 f (0ji 0 h *i )] , complexity of the algorithm is manageable. Even solutions

of higher-order systems such as a three-compartment model
can be realized by taking advantage of the well-defined struc-k2i Å

1
2

[ f (0ji / h *i ) / f (0ji 0 h *i )] . [19]
ture of the algorithm and a symbolic calculation program.
Regarding the computational cost of the algorithm it should
be mentioned that solving for a period of constant RF irradia-This result simplifies Eq. [11] further; i.e.,
tion requires 1.2 ms on an old-fashioned SuperSPARC, 60-
MHz microprocessor (SUN Microsystems, Inc., MountainFk2i01cos(hit) / k2i

hi

sin(hit)Ge0jit

View, USA). The algorithm is available as C// code from
the authors.

Å f ( x2i01)
x2i01 0 x2i

e x2 i01t / f ( x2i )
x2i 0 x2i01

e x2 it . [20]
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